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Abstract

Volatility clustering is a well-known stylized feature of financial asset returns. In

this paper, we examine whether the volatility clusters are symmetric by focusing our

investigation on the structure of the clusters of volatilities in both the stock and foreign

exchange markets. The employment of copula-based semi-parametric univariate time-

series models accommodates the clusters of both high and low volatilities of returns in

the analysis. Using daily realized kernel volatilities constructed from high frequency

return data, we find that volatility clustering is highly nonlinear and strongly asymmet-

ric: that is, clusters of high volatilities tend to be much more pronounced than clusters

of low volatilities. Our paper is the first one to address and document the asymmetry

of volatility clustering. The finding is consistent with the asymmetric leverage effect

and volatility feedback effect documented in recent studies. In addition, the volatility

clusters are shown to remain persistent and asymmetric even after forty days. This

finding is consistent with the long memory dependence in volatility documented in the

literature.

Keywords: Volatility clustering, Univariate time series copulas, Realized kernel volatil-

ity, High-frequency data.

JEL Classification: C51, G32.
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1 Introduction

One of the best known stylized features of financial asset returns is volatility clustering.

That is, high volatility movements (represented by large changes in returns) are observed

to be followed by high volatility movements (characterized by a period of relative market

turbulence), while low volatility movements (indicated by returns hardly fluctuating) are fol-

lowed by low volatility movements (corresponding to a period of a relative tranquil market).

The former signifies the clusters of high volatility while the later signifies the clusters of low

volatility. This pattern of volatility clustering captures the dynamics of volatility fluctuations

in financial assets. Modeling this type of volatility clustering of financial market is clearly

important since volatility values can directly impact prices of options and risks of stocks and

portfolios. So far and to the best of our knowledge, volatility clustering has mainly been an-

alyzed within the class of Generalized Autoregressive Conditional Heteroscedastic (GARCH)

and Stochastic Volatility (SV) models. Each class of these models can well capture the sym-

metric volatility clustering pattern in asset returns, i.e., the clusters of high volatilities and

low volatilities are modeled in a symmetric way. However, an important research question

arises as to whether volatilities actually cluster the same way during turbulent times and

tranquil times in the markets? In fact we often observe turbulent market periods occur

more frequently than tranquil market periods; that is, high volatilities of returns tend to

cluster more often than low volatilities of returns. We call this phenomenon of asymmetry

in the frequency of clusters of high volatilities and low volatilities än asymmetric volatility

clustering̈. The GARCH and SV models are not equipped to capture this type of asymmetry
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in volatility clustering. This paper models this type of possible asymmetric and non-linear

volatility clusters and examines them empirically.

In this paper, we contribute to the literature by investigating the structure of volatility

clustering of financial asset returns by using a copula approach. Copulas allow us to capture

the structure of the clusters of the volatilities, of either a symmetric or an asymmetric type.

It is well known that copula is a multivariate distribution function of the standard uniform

marginals. In particular, due to Sklar’s theorem, the dependence between variables can be

modeled separately via certain copula functions and their corresponding marginals. Further,

a copula approach can accommodate various types of marginal distributions. Moreover,

different copulas are designed to capture different types of dependence structures: symmetric

or asymmetric, and linear or nonlinear. This property of copulas provides flexibility in the

modeling of dependence in the return data.

Due to this flexibility, the copula approach has been extensively applied in Finance in

recent years. Just to mention a few, Jondeau and Rockinger (2006) use both the conditional

and dynamic copula models to examine the dynamic dependence of the US and European

stock market returns. Rodriguez (2006) investigates market contagions via copulas. Patton

(2006) employs copulas to model the asymmetric dependence on the foreign exchange rate

markets. More recently, Chollete et al. (2011) use copula approaches and find asymmetric

extreme dependence among equity returns, which indicates that the stock markets tend to

crash together but do not boom together. Ning (2010) and Wang et. al. (2013) apply copulas

to examine nonlinear dependence between stock and foreign exchange markets. Chu (2011),

4



Boubaker and Sghaierand (2013), and Low et. al. (2013) emphasize the advantages of using

copulas in asset allocation and portfolio optimization. Lastly a survey on applications of

copulas in finance and economics can be found in Patton (2009).

While most applications of the copula approach are in the multivariate context, Chen

and Fan (2006) develop theoretical foundations for extending the copula approach to model

dependence of a univariate variable across time. Following Chen and Fan (2006), we apply

the copula approach to a single time series variable and employ a semi-parametric estima-

tion method to study the pattern of volatility clustering in financial asset returns. The

advantage of this method is that we do not need to specify the marginal distribution of the

volatility; instead, we estimate the volatility with an empirical distribution function that

is distribution-free. In this paper we focus on the conditional volatility clustering, which,

more precisely stated, is the dependence between consecutive volatilities; that is, given the

volatility level in the previous period we are interested in the question of how often does

current volatility clusters with previous volatility using a number of parametric copulas. The

copula parameters are estimated by a two-step maximum likelihood method, also known as

the Canonical Maximum Likelihood (CLM) method.

We note that copulas possess a number of attractive properties for the purpose of study-

ing volatility dependence. First, copulas are designed to capture both nonlinear and linear

dependence in a time series. This is especially important in the investigation of the depen-

dence of the volatility clusters, which may not be linear. Second, copulas can accommodate

any types of continuous marginal distributions, including a family of skewed and fat-tailed
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distributions, which can be used to characterize our volatility data with significant posi-

tive skewness coefficients and large excess kurtosis values. Third, copulas are invariant to a

strictly increasing transformation, including a nonlinear transformation. This feature is espe-

cially convenient since very often our transformation of the data is increasing but nonlinear.

For further properties of copulas, see, for instance, Joe (1997), Nelson (1999), Embrechts et

al. (2002), and Cherubini et al. (2004).

In this paper, the characteristics of volatility clustering are examined for the returns from

both the stock and foreign exchange rate markets. We construct daily realized volatilities

using high frequency data. We find that, in our sample data, volatility clustering is mostly

asymmetric, in the sense that volatility clustering occurs more often for high volatilities

than for low volatilities. This asymmetric pattern also exists in the dynamics of volatility

clusters. That is, high volatilities, not only on average, but also across time, cluster more

often than low volatilities. This result reveals that, in addition to the volatility clustering

found previously in the GARCH and SV models, the structure of the volatility clustering

exhibits asymmetric patterns, with an increasing tendency for clusters for high volatilities to

occur relative to low volatilities. This, to the best of our knowledge, has not been documented

in the literature so far. This new result implies that consecutively highly volatile periods

tend to occur more often than consecutively tranquil periods in both the stock and currency

markets.

Our finding of asymmetric volatility clusters is consistent with the asymmetric leverage

effect and volatility feedback effect documented in recent studies. Notably, Bollerslev et.
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al. (2006) find a highly significant, prolonged leverage effect (i.e., volatility increases more

following negative returns than positive returns.) and an almost instantaneous volatility

feedback effect (i.e., an increase in volatility results in negative returns.) for the intra-daily

data. In particular, our findings suggest that, through the leverage effect, a negative return

initially amplifies the extent of subsequent volatility, and this, through the volatility feedback

effect, induces a negative return. This negative return, in turn, through the leverage effect,

intensifies the degree of the subsequent volatility. The tendency for these two effects to be

prolonged and asymmetric implies a prolonged clustering of large volatilities.

In addition, in this paper, we also investigate the duration of the volatility clustering in

the return series. Our results indicate that the clusters in most of the volatilities of the return

series examined in this paper tend to be highly persistent and do not appear to dissipate

even after forty days. This finding supports the long memory dependence in volatility of the

returns as documented in the literature, see Engle and Bollerslev (1986), Bollerslev et al.

(1992), Ray and Tsay (2000) and among others.

The rest of the paper is organized as follows. Section 2 presents the copula models for

the volatility clustering. Section 3 describes the sample data and the construction of the

kernel volatility measures from the high frequency data of the returns. Section 4 presents

and discusses the empirical results and Section 5 concludes the paper.
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2 The Methodology

Copula is a multivariate cumulative distribution function with the marginal distribution

being uniform on the interval [0,1]. In this paper, we apply a class of parametric copulas

in modeling the dependence between consecutive volatilities of the return series. According

to Sklar’s (1959) theorem, there is a one-to-one relationship between a joint distribution

and a copula. Chen and Fan (2006) extend this property from the multivariate context

to a univariate set-up. Let Yt and Yt−1 be the consecutive volatility variables at time t

and t− 1 respectively. Then the clustering property of consecutive volatilities is completely

characterized by their joint distribution, H(yt, yt−1). In particular, based on Sklar’s theorem,

there exists a copula C(.) such that

H(yt, yt−1) = C(u1, u2, θc). (1)

where u1 = G(yt) and u2 = G(yt−1) are the marginal cumulative distribution functions

of Yt and Yt−1, respectively and θc is the copula parameter vector. In other words, the

copula function is a joint distribution function of the transformed random variables u1 =

G(yt) and u2 = G(yt−1). One distinct advantage of copula approach is that it can separate

the dependence from marginals, with the dependence completely captured in the copula

function. Since our focus is on the dependence between two consecutive volatilities, rather

than their marginals, we specify the copula function parametrically (but not the marginal

distribution of the volatility). As an important consequence, this particular approach is free

of any specification errors of the marginals. This advantageous feature is highlighted in the

simulation studies in Fermanian and Scaillet (2005). In this paper, we follow Chen and

8



Fan (2006), which extends the method in Genest et al. (1995) from the i.i.d. multivariate

time series case to the dependent univariate time series case, and adotp a semi-parametric

estimation method (CML). See also Cherubini et al. (2004)) and Joe (1997). In essence, this

is a two-step procedure. In the first step, the marginal distribution function G(.) is estimated

non-parametrically via its re-scaled empirical cumulative distribution function (ECDF)

Ĝ(yt) =
1

T + 1

T∑
t=1

1{Yt < y}. (2)

The ECDF is re-scaled to ensure that the first-order condition of the copula’s log-likelihood

function is well defined for all finite T .1 By the Glivenko–Cantelli theorem, ĜY (yt) con-

verges to its theoretical counterpart G(yt) uniformly. In the second step, given the non-

parametrically estimated ECDF, Ĝ(yt) and Ĝ(yt−1), we can estimate the copula parameters

θc parametrically by the method of maximum likelihood, with

θ̂c = arg max
θc

L̃,

where L̃(θc) =
1

T

∑
log c(Ĝ(yt), Ĝ(yt−1); θc),

where c(.) is the copula density function. Joe (1997) proves that under a set of regular-

ity conditions, the two-step estimator is consistent and asymptotically normal. It is also

pointed out that the two-step method is efficient. In addition, as indicated in Patton (2008),

this method is computationally tractable. Importantly Chen and Fan (2006) establish the

asymptotic properties for the resulting semi-parametric estimator.

Using copulas, we can measure the dependence at the extremes by estimating the extent

of the tail dependence. A tail dependence measures the probability that both variables are

1See Genest et al. (1995) and Chen and Fan (2006) for a further discussion on this.
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in their lower or upper joint tails. Intuitively, an upper (lower) tail dependence refers to the

relative amount of mass in the upper (lower) quantile of their joint distribution. The lower

(left) and upper (right) tail dependence coefficients, λl and λr , in the context of volatility

dependence (clusters) are defined as:

λl = lim
u−→0

Pr[G(yt) ≤ u|G(yt−1) ≤ u] = lim
u−→0

C(u, u)

u
, (3)

λr = lim
u−→1

Pr[G(yt) ≥ u|G(yt−1) ≥ u] = lim
u−→1

1− 2u+ C(u, u)

1− u
, (4)

respectively, where λl and λr ∈ [0, 1]. If λl or λr is positive, Yt and Yt−1 are said to be left

(lower) or right (upper) tail dependent. That is, λl measures the degree of clusters of low

volatilities, while λr measures the degree of clusters of high volatilities. Since tail dependence

measures are derived from the copula functions, they possess the desirable properties of

copulas mentioned earlier.

Different copulas represent different dependence structures. We will focus on five copulas

that represent popular types of dependence structures in finance: Gaussian copula, Student

T copula, Clayton copula, Clayton survival copula, and the Symmetrized Joe Clayton (SJC)

copula.

The Gaussian copula serves as a natural benchmark, as it does not have tail dependence

and is widely assumed in financial models. The bivariate Gaussian copula has the form as

follows:

C(u1, u2; ρ) = Φρ(Φ
−1(u1),Φ−1(u2), ρ),

where Φρ is a bivariate normal distribution function with the correlation coefficient ρ, and

Φ−1 is an inverse of the univariate normal distribution function. This copula is determined
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by only one parameter ρ and λl = λr = 0. In terms of volatility clustering, a Gaussian copula

implies no clusters of very high or low volatilities.

The t copula is defined as

Cυ,ρ(u1, u2) = tυ,ρ(t
−1
υ (u1), t−1

υ (u2)),

where tυ,ρ is a bivariate student t distribution with degrees of freedom (DoF) denoted by υ

and the correlation coefficient ρ. t−1
υ is an inverse of the univariate student t distribution.

The advantage of a T copula is that it retains a linear correlation measure ρ and in addition

to that, it introduces a parameter, DoF υ, that determines the extent of symmetric tail

dependence. It also nests the Gaussian copula. In the T copula, clusters of both high and

low volatilities are permitted, but the occurrence of clusters is equally likely.

The Clayton copula is defined as:

C(u1, u2) = (u−α1 + u−α2 − 1)1/α for α > 0

where α is an associate parameter. Different from the T copula, the Clayton copula allows

only a lower tail dependence: λl = 2−1/α, λr = 0. Therefore a Clayton copula is designed to

capture clusters of only low volatilities but not high volatilities.

The Clayton survival copula can be expressed as

CSur(u1, u2) = [(1− u1)−α + (1− u2)−α]1/α + u1 + u2 − 1 for α > 0

In contrast to the Clayton copula, the Clayton survival copula allows for only upper tail

dependence: λl = 0, λr = 2−1/α. This implies that only clusters of very high volatilities, but

not very low volatilities, are captured in the Clayton survival copula.
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Finally, the SJC copula is defined as

CSJC(u1, u2|λr, λl) = 0.5× (CJC(u1, u2|λr, λl) +CJC(1−u1, 1−u2|λl, λr) +u1 +u2−1), (5)

where CJC(u, v|λr, λl) is the BB7 copula (also called Joe-Clayton copula) of Joe (1997)

defined as

CJC(u1, u2|λr, λl)

= 1− (1−
{[

1− (1− u1)k
]−r

+
[
1− (1− u2)k

]−r − 1
}−1/r

)1/k, (6)

where k = 1/log2(2 − λr), r = −1/log2(λl), and λl ∈ (0, 1), λr ∈ (0, 1). The SJC

copula allows for an asymmetric upper and lower tail dependence and by construction, it

is symmetric when λl=λr as a special case. A SJC copula captures clusters of both high

and low volatilities and they are not necessarily symmetric. Thus this is , by far, the most

flexible copula of all of the copulas studied in this paper.

In summary, the above five copulas capture the most important types of dependence for

financial data. We use AIC and BIC to assess and compare the performance of these copula

models.

3 Data Description and Construction of Realized Mea-

sure for Volatility

It is well-known that volatility can not be directly observed in the financial markets. In this

paper, a popular model-free measure for volatility is used in the analysis, namely realized

12



kernels. Asymmetric volatility clusters are examined for both the stock and foreign exchange

rate (FX) markets. Our sample data set consists of five stock market indices, including

the S&P 500 (SPX), Russell 2000 (RUT), Dow Jones Industrial Average (DJI), Nasdaq

100 (IXIC) and EURO STOXX 50 index (SToXX50) for the period January 2, 2002-April

10.,2012 and four foreign exchange rates, including Euro (EUR), Great British pound (GBP),

Switzerland Franc (CHF) and Japanese yen (JPY) from January 3 1999 to March 1, 2009.

All the currencies are in terms of the US dollars. The sample interval covers different periods

dictated by the data availability. 2

A standard model-free indicator of the daily volatility is a simple summation of squared

intra-daily returns, see Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard

(2001) and etc. To set forth the notation, let pd,t be the logarithmic price at a certain

sampling frequency interval on day t. Consequently, the continuously compounded returns

with D observations on day t is defined as rd,t = 100(pd,t − pd−1,t), where d = 1, 2, ..., D and

t = 1, 2, ..., T . When d = 1, the first subscript is ignored and rt denotes the return series

on a given day. A simple estimator of the daily volatility can be constructed by summing

up the squared intra-day returns when the market is open, i.e., RVt =
D∑
d=1

r2
d,t. Under the

assumptions that returns have zero mean, zero correlation and finite second moments, RV

is a consistent measure of the daily volatility under an ideal market condition. However, in

practice, there are several potential issues in the above construction for the realized volatility.

We elaborate them below.

2Our data source are from www.tickplusdata.com and realized library of Oxford-man Institute of Quan-

titative Finance.
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Due to a rapid development in the computer technology, the financial transaction data

have become available at the ultra high frequency level. In particular, the transaction price

nowadays can be recorded at a very fine time scale, such as transaction by transaction (tick-

by-tick), one minute, five minutes and etc. This raises the question as to which set of discrete

time series data we should choose as an appropriate measure of the realized volatility. The

choice of the sampling frequency is not trivial by any means. Intuitively, a larger data set

should always contain more information. As the sampling interval approaches zero, the

realized volatility can be equivalently considered as an integrated estimator. However, there

is an important trade-off involved in choosing the observation frequency due to the presence

of the market microstructure noises. In other words, financial asset prices diverge from their

”efficient values” due to a variety of market frictions. Recently, increasing attention has

been focused on the analysis of the realized volatility measures, see for instance Zhang et al.

(2005), Hansen and Lunde (2006), van Dijk and Martens (2007), Andersen, Bollerslev and

Diebold (2007), Maheu and McCurdy (2009) and etc. See also a survey paper on this topic

by McAleer and Medeiros (2008).3

Another non-trivial issue in the construction of RV is the noise contamination effects.

There are several typical sources of noise embedded in the high frequency trading data.

3In the original version of the paper, we also have the results for the realized volatility. But, to save space,

the results are not reported here. To construct the RV, we follow most of the literature and simply use 5-

minute sampling intra-day data because this interval is considered as the frequency at which the transaction

prices are less distorted by the microstructure noises. Those results are available upon request from the

authors.
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For example, Hasbrouck (1993) mentions that noise could arise from discreteness, non-

information based component of bid-ask spread, etc. In the presence of this noise, realized

volatility could be a biased estimator as shown in Barndorff-Nielsen and Shephard (2002).

For this reason, the popular realized kernel is adopted in the paper. The kernel estimator for

volatility was first introduced by Barndorff-Nielsen et al. (2008). Unlike the realized volatil-

ity, Barndorff-Nielsen et al. (2008, 2009) show that the proposed realized kernel estimator

is a robust estimator for the underlying integrated volatility even when the high frequency

trading data are contaminated with noises. Their empirical results also show that the re-

alized kernel provides a better performance than the traditional realized volatility measure.

Following Barndorff-Nielsen et al. (2008, 2009), in this paper, our realized kernel estimator

has the form of equation (1.2) in Barndorff-Nielsen et al. (2009). According to Sheppard

(2008), the nonflat-parzen kernel function is used on the data at the tick-by-tick level.

The summary statistics for the volatilities of the returns are presented in Table 1. In

particular, the first four moments are reported. In general, the mean and variance of the

volatilities in the FX market are observed uniformly smaller than those from the stock

markets, reflecting much greater volatility in the stock markets than in the foreign exchange

markets. We could also see this phenomenon from our range statistics. We note that the

constructed realized kernel volatilities are all skewed to the right, indicating a longer right

tail. The kurtosis coefficients range from 44.2 to 301.2, showing an extreme fat-tail property

of the distributions. Both the skewness and kurtosis coefficients indicate that the volatility

series are far away from a normal distribution. Thus we cannot use a linear correlation
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method to measure the dependence of such non-normally distributed variables. The copula

approach, on the other hand, which allows for any continuous marginal distributions, is

expected to provide a more accurate measure for this type of dependence in the data.

Figure 1 presents all of the kernel volatility series. The graph also shows some evidence

of clusters of volatilities.

4 Empirical Results

In this section, we discuss the results obtained from applying the approach described in sec-

tion 2 to our kernel volatility series. First, we consider the linear correlation measures of the

consecutive volatilities in the first row of Table 2. The reported correlation coefficients range

from 0.64 to 0.88, reflecting a modest to high linear dependence between the consecutive

volatilities of the return series. This represents a stylized feature of the volatility clustering

of the returns in both the stock and foreign exchange rate markets.

Next, we examine the dependence structure between volatility Yt at time t and Yt−1 at

time t − 1 via a set of copula models that represent different dependence structures. The

results are presented in Table 2. First, looking at the estimates of dependence parameters

in the copula models are all statistically significant, which gives strong evidence for the

existence of volatility clustering. Comparing the Gaussian copula and the T copula, we find

that the T copula performs comparatively better with smaller AIC and BIC for all stock

indices and exchange rates. That is, the measure which includes tail dependence works better

than the measure which does not allow for tail dependence. This is taken as the evidence of
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tail dependence between the consecutive volatilities. Second, comparing the T copula with

the SJC copula, we find that the SJC copula dominates the T copula as indicated by much

lower AIC and BIC values. This leads us to conclude that the model with asymmetric tail

dependence outperforms the model with symmetric tail dependence. Finally, comparing the

SJC copula with the Clayton survival copula and the Clayton copula, we find that the SJC

copula outperforms both the Clayton survival copula and the Clayton copula, where the

latter two allow for only one side tail dependence, either right tail only or left tail only. In

summary, based on both the AIC and BIC, the SJC copula is preferred over all other four

copulas considered in this paper. This is the evidence of the presence of dependence in both

tails.

Next, we focus on the results from the best performed copula, which is the SJC cop-

ula. Both the left and right tail dependence parameters are highly statistically significant,

indicating the existence of both the left and right tail dependence of the consecutive volatil-

ities. This points to the likelihood of the clusters of low volatilities with low volatilities,

and the likelihood of high volatilities with high volatilities. Second, for each asset, the left

tail dependence parameter is always smaller than the right tail dependence parameter. This

suggests the probability of the clusters of low volatilities is smaller than the probability of

the clusters of high volatilities. In other words, high volatilities tend to cluster more of-

ten than low volatilities of the return series considered in this paper. This result is also

supported by the superior performance of the Clayton survival copula with large upper tail

dependence compared to the Clayton copula with smaller lower tail dependence. The asym-
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metric tail dependence reveals that, in addition to the volatility clustering previously found

in the GARCH and SV models, volatility clustering is highly asymmetric, with a stronger

tendency of clusters of high volatilities than low volatilities. To the best of our knowledge,

this result has not been documented in the literature. The calculated t-statistics for the

null hypothesis that the left tail dependence parameter is equal to or greater than the right

tail dependence against the alternative hypothesis that the left tail dependence parameter

is smaller than the right tail dependence is strongly rejected in all cases as indicated by the

uniformly small p-values. We interpret this result as evidence that the left tail dependence

parameter is significantly smaller than the right tail dependence parameter. Therefore, the

volatility clustering is found to be highly asymmetric, i.e., there is a significantly stronger

tendency for clusters of large volatilities to occur than small volatilities in the financial asset

return series considered in this paper.

The asymmetry in the volatility clustering is consistent with the leverage effect and the

return-volatility feedback effect documented in the literature, notably in Bollerslev et al.

(2006) for intra-daily volatilities. First, through the leverage effect, a negative return is

more likely to be followed by a higher volatility than a positive return. Second through

the volatility feedback effect, the higher volatility is likely to be accompanied by a negative

return, which, in turn, again through the leverage effect, is followed by another high volatility.

Such a process points to clusters of large volatilities. On the other hand, the leverage effect

also suggests that a positive return is less likely to be followed by an increase of volatility,

indicating a weaker tendency of clusters of small volatilities.
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Interestingly, when comparing the results across different groups of assets, we find that

the asymmetric pattern of volatility clusters tends to be more pronounced for the stocks than

the exchange rates. We surmise that the stock markets tend to have more extreme events

than the exchange rate markets.

It is well documented that the volatility clustering at the daily or weekly interval is

strongly persistent and has a long memory, See Bollerslev et al. (1992) for a survey of this

literature for ARCH models and also in Ray & Tsay (2000). Thus it would also be interesting

to investigate how long the memory lasts and how slowly the volatility clusters die out. To

do this, we examine the clusters of volatilities of the return series from the first lag to the

60th lag using the SJC copula. We present the results in Table 3. From the table, we first

observe that the degree of volatility clusters decreases gradually as the lag increases. This

is reflected in generally smaller tail dependence parameters and larger values of the AIC

and BIC with the increase of the lag. Second, the decay of the upper tail dependence is

much slower than the lower tail dependence, meaning the clusters of the high volatilities do

not disappear as fast as the clusters of low volatilities. Low volatility clusters decay rapidly

to 0 for all US stock indices and GBP and JPY. Third even after 40 days, the clusters in

high volatilities are still both statistically and economically significant in most of the cases,

indicating a strong persistence in the clusters of high volatilities. Finally, the clusters decay

at a slower speed for the exchange rate volatilities than for the stock indices. Thus volatility

clusters are more persistent in the foreign exchange markets than in the stock markets.

To visualize the decaying patterns of the clusters, we plot the left and right tail depen-
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dence parameters against the lags for each group in Figures 2 and 3. These figures confirm

visually that the clusters of high volatilities decay very slowly, showing a strong tendency

of the clustering persistency. In addition, these figures also show that the decay in large

volatilities are more monotonic, while the decay in low volatility clusters could be alternat-

ing in size. For instance, in the case of the NSDQ return, the lower tail dependence between

volatilities of the past 5 days is larger than that of the past 4 days.

In summary, we find a high and durable persistence in the clusters of large volatilities in

the both the equity and foreign exchange markets. This is consistent with the long-memory

of volatilities documented in the literature. Anderson and Bollerslev (1997) explain the

source of the volatility persistence by considering the volatility as a mixture of numerous

heterogeneous short-run information arrivals, and the aggregation of these information flow

processes may lead to the long memory dependence.

5 Conclusions

In this paper, we have analyzed the volatility clustering of a number of return series by

using the copula approach with the kernel volatility constructed from the high frequency

data. The copula approach has made it possible for us to detect the highly asymmetric

pattern in the clusters of high and low volatilities. The availability of the high frequency

data, and, thus, the ability to construct the kernel volatility, makes it convenient for us to

use the copula approach directly. We found that the volatility clusters in the return series are

asymmetric, in the sense that high volatilities tend to cluster more often than low volatilities.
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This asymmetric volatility clusters were visible even when we allowed for the time variation

in the volatility clusters. Finally, we found that the clusters are both strongly persistent and

durable in the sense that they do not die out even after a one month period. We believe that

our findings add to the list of important stylized facts about financial asset returns that are

useful for both modeling and forecasting purposes.
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Table 1: Descriptive Statistics of Realized Volatility

SPX RUT DJI IXIC StoXX50 GBP EUR CHF JPY

Mean 1.38 1.43 1.35 1.24 1.91 0.36 0.44 0.47 0.50

Standard deviation 3.16 2.68 3.14 2.14 3.72 0.51 0.45 0.38 0.64

Skewness 12.89 9.31 12.83 9.03 12.59 6.46 6.23 4.72 8.41

Kurtosis 298.64 149.26 287.43 139.38 290.78 58.76 72.56 41.86 126.25

Min 0.05 0.05 0.05 0.04 0.01 0.04 0.03 0.04 0.02

Max 93.13 64.25 91.26 50.09 109.22 8.70 8.86 6.42 14.68

Count 2567 2567 2567 2567 2592 2555 2555 2555 2555
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Table 2: Results from Different Copulas

SPX RUT DJI NSDQ Stoxx50 GBP EUR CHF JPY

Linear ρ 0.64 0.67 0.65 0.68 0.58 0.88 0.66 0.65 0.70

Gaussian Copula

ρ 0.80 0.73 0.80 0.82 0.83 0.67 0.72 0.63 0.68

Std error 0.006 0.007 0.006 0.005 0.005 0.009 0.008 0.010 0.009

AIC -2614 -1961 -2591 -2886 -3020 -1540 -1831 -1257 -1549

BIC -2608 -1955 -2585 -2880 -3015 -1534 -1825 -1251 -1543

t Copula

ρ 0.81 0.74 0.80 0.83 0.84 0.67 0.72 0.63 0.68

Std error 0.006 0.008 0.006 0.006 0.005 0.012 0.009 0.012 0.011

ν 9.17 7.16 6.89 8.15 51.00 3.92 5.02 6.32 5.07

Std error 1.613 1.144 1.027 1.332 0.002 0.452 0.673 0.956 0.636

AIC -2661 -2016 -2665 -2947 -3059 -1656 -1927 -1322 -1652

BIC -2649 -2005 -2653 -2936 -3047 -1645 -1915 -1310 -1640

symmetric tail 0.32 0.30 0.38 0.38 0.04 0.37 0.36 0.24 0.32

SJC Copula

λL 0.30 0.17 0.36 0.39 0.36 0.28 0.42 0.31 0.33

Std error 0.016 0.023 0.033 0.004 0.002 0.313 0.024 0.027 0.027

λR 0.74 0.70 0.73 0.75 0.76 0.64 0.61 0.52 0.59

Std error 0.007 0.007 0.006 0.007 0.001 0.124 0.012 0.015 0.012

AIC -2780 -2275 -2735 -2953 -3071 -1843 -1939 -1326 -1687

BIC -2769 -2264 -2723 -2941 -3059 -1831 -1927 -1314 -1676

Clayton survival Copula

λR 0.75 0.71 0.75 0.76 0.77 0.65 0.65 0.56 0.62

Std error 0.005 0.007 0.006 0.005 0.005 0.008 0.008 0.011 0.009

AIC -2701 -2241 -2626 -2830 -2991 -1739 -1735 -1207 -1546

BIC -2695 -2236 -2620 -2824 -2985 -1733 -1729 -1201 -1540

Clayton Copula

λL 0.61 0.52 0.63 0.65 0.66 0.50 0.57 0.47 0.52

Std error 0.010 0.013 0.009 0.008 0.008 0.014 0.011 0.015 0.013

AIC -1503 -1030 -1562 -1748 -1803 -927 -1241 -815 -1005

BIC -1497 -1024 -1556 -1742 -1797 -921 -1236 -810 -999
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Figure 1a   Kernel Volatilities for indices 
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Figure 1b   Kernel Volatilities for Exchange Rates 
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Figure 2. Long memory of high volatility clusters 

A. For stock indices 

 

B. For currencies 
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Figure 3. Decay of low volatility clusters 

A. For stock indices 

 

B. For currencies 
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